Ab Initio SCF and DFT Studies on Solvent Effects on Intramolecular Rearrangement Reactions

Pratim K. Chattaraj,[†] Patricia Pérez,[‡] Jenny Zevallos,[‡] and Alejandro Toro-Labbé*,[‡]

Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India, and Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile

Received: June 13, 2000; In Final Form: October 16, 2000

Two intramolecular rearrangement reactions trans-N₂H₂ $\rightarrow cis$ -N₂H₂ and F₂S₂ \rightarrow FSSF have been studied in both gas and solution phases using the ab initio SCF method at the Hartree–Fock level as well as using density functional theory with B3LYP exchange-correlation functionals with 6-311G** and 6-311++G** basis sets. Polarizability calculations have been performed using Sadlej's basis set also. Maximum hardness and minimum polarizability principles have been found to be valid in almost all cases. For the former reaction, the maximum molecular valency principle is obeyed. Reactions become more favorable, thermodynamically and kinetically, in the presence of the solvent. Variation of electrophilicity along the internal reaction coordinate is analyzed in terms of the profiles of the global electrophilicity index as well as condensed electrophilic Fukui functions at different atomic sites. It is found that electrophilicity decreases in the solution phase.

1. Introduction

Intramolecular rearrangement reactions are present in a vast majority of organic reactions that involve changes at functional groups while the molecular skeletons of the reactants remain unchanged.¹ Usually, these reactions proceed through a cyclic transition state (TS) containing four, five, or six atoms. These reactions have been shown to be important in gaining insights into the popular chemical concepts associated with reactivity and selectivity. Although chemical reactivity is characterized by global reactivity parameters like electronegativity^{2,3} (χ), hardness^{4–7} (η), polarizability^{8,9} (α), molecular valency^{10,11} (V_M), etc., the selectivity is usually understood in terms of local functions like the Fukui function¹² (f(r)) and local softness¹³ (s(r)) or their condensed-to-atom variants.^{14,15} Electronegativity¹⁶ (χ) and hardness¹⁷ (η) have been defined within density functional theory¹⁸ (DFT) as follows:

$$\chi = -\mu = -\left(\frac{\partial E}{\partial N}\right)_{\nu(r)} \tag{1}$$

and

$$\eta = \frac{1}{2} \left(\frac{\partial^2 E}{\partial N^2} \right)_{\nu(r)} \tag{2}$$

where μ and $\nu(r)$ are the chemical and the external potentials of an *N*-electron system with total energy *E*.

According to the electronegativity equalization principle,¹⁹ "all the constituent atoms in a molecule have the same electronegativity value which is roughly equal to the geometric mean of the electronegativities of the isolated atoms." The hard– soft acids–bases (HSAB) principle^{4–6,17,20} states that, "among the potential partners of same electronegativity, hard likes hard and soft likes soft", and the statement of the maximum hardness principle^{21,22} (MHP) is, "there seems to be a rule of nature that molecules arrange themselves so as to be as hard as possible." On the basis of an inverse relationship²³ between α and η , a minimum polarizability principle^{24,25} (MPP) has been proposed as, "the natural direction of evolution of any system is toward a state of minimum polarizability." It has also been found^{10,11,26} that the molecular valency often becomes maximum for the most stable configuration conformation. These electronic structure principles help in understanding the reactivity pattern associated with any physicochemical process.

The most important local descriptor of site selectivity is the Fukui function,¹² which is defined as follows:

$$f(r) = \left(\frac{\delta\mu}{\delta\nu(r)}\right)_{N} = \left(\frac{\partial\rho(r)}{\partial N}\right)_{\nu(r)}$$
(3)

Three types of Fukui functions can be defined¹² on the basis of the discontinuity of the $\rho(r)$ vs *N* curve,²⁷ viz.

$$f^{\dagger}(r) = \left(\frac{\partial \rho(r)}{\partial N}\right)_{\nu(r)}^{\dagger} = \left[\rho_{N+1}(r) - \rho_N(r)\right] \simeq \rho_{\text{LUMO}}(r) \quad (4)$$

for nucleophilic attack

$$f^{-}(r) = \left(\frac{\partial \rho(r)}{\partial N}\right)_{\nu(r)}^{-} = \left[\rho_{N}(r) - \rho_{N-1}(r)\right] \simeq \rho_{\text{HOMO}}(r) \quad (5)$$

for electrophilic attack

$$f^{\circ}(r) = \left(\frac{\partial \rho(r)}{\partial N}\right)^{\circ}_{\nu(r)} = \frac{1}{2}[f^{+}(r) + f^{-}(r)] = \frac{1}{2}[\rho_{\text{LUMO}}(r) + \rho_{\text{HOMO}}(r)] \quad (6)$$

for radical attack.

It is possible to condense f(r) to a specific atom in a molecule by taking the respective electron population. Three different local softness s(r) can also be defined^{13,28} using the relation

$$s(r) = f(r)S \tag{7}$$

where f(r) can be taken from eqs 4–6 and the global softness²⁹

^{*} To whom correspondence should be addressed. E-mail: atola@puc.cl.

[†] Indian Institute of Technology.

[‡] Pontificia Universidad Católica de Chile.

TABLE 1: Computed Frequencies at the Stationary Points along the IRC for the Intramolecular Conversion of N_2H_2 and $F_2S_2^a$

			HF/6-311G** $\epsilon = 1$.	.0		
$t-N_2H_2$	BU 1462.0592	AU 1474.1115	AG 1741.1232	AG 1895.4072	AG 3556.0421	BU 3591.0630
TS	A 1754.5837 i	A 791.8715	A 1669.8337	A 1886.4194	A 3297.0322	A 4121.3919
$c-N_2H_2$	A 1408.0324	A 1494.0996	A 1699.3821	A 1891.7399	A 3455.0920	A 3528.3690
		H	$IF/6-311++G^{**}\epsilon =$	1.0		
	BU	AU	AG	AG	AG	BU
$t-N_2H_2$	1457.2553	1465.2795	1734.9799	1881.6253	3565.7299	3601.2602
TS	A' 1739.5208 i A''	A'' 767.5658 A'	A' 1660.1917 A'	A' 1871.4887 A'	A' 3314.6946 A'	A' 4122.6989 A'
$c-N_2H_2$	1359.6754	1489.5971	1692.3113	1882.1014	3463.4060	3532.9798
		E	$3LYP/6-311G^{**}\epsilon =$	1.0		
	AU	BU	AG	AG	AG	BU
$t-N_2H_2$	1356.1185	1360.5972	1608.0639	1654.1063	3218.8366	3248.6521
TS	1608.2753 <i>i</i>	697.5265	1524.7083	1693.7829	2771.7068	3905.5771
	A‴	A'	Α'	Α'	Α'	Α'
$c-N_2H_2$	1280.8038	1343.2434	1552.1370	1663.6634	3056.8630	3162.0374
	ATT	B3	LYP/6-311++G** ϵ	= 1.0		DII
$t-N_2H_2$	1346.7141	1355.2744	1594.2533	1647.0873	3233.9888	3266.5587
22	A'	A'	A'	A'	A'	A'
TS	1445.2883 i	775.4442	1511.5311	1691.4550	2926.9921	3854.1506
c-N ₂ H ₂	A'' 1271.2973	A' 1341.1728	A' 1542.8268	A' 1656.3416	A' 3073.0734	A' 3169.7275
0 11212	12/112/70	10 111 / 20	$HE/6-311G^{**} \epsilon = 1$	0	201210121	010011210
	А	А	A A	А	А	А
F_2S_2	295.7075	371.8227	461.4415	715.2972	801.8829	832.5680
тс	A 555 8837 j	A 179 9070	A 351 4232	A 305 2014	A 795 8474	A 877 6747
15	A	A	A	A	A	A
FSSF	184.3117	293.2211	348.8175	569.3182	799.2924	824.8564
		H	$IF/6-311++G^{**} \epsilon =$	1.0		
EC	A 200.0587	A 280 6641	A 450 6727	A 715 5544	A 704 4600	A
$\Gamma_2 S_2$	290.9387 A	380.0041 A	439.0727 A	/15.5544 A	794.4600 A	820.0090 A
TS	523.4909 i	180.0368	350.6538	388.6991	794.4424	873.0159
ESSE	A 182 6462	A 202 0133	A 348 3070	A 570 2207	A 796 2444	A 823 2602
1.991	182.0402	292.9133	21 VD/6 211 C** c =	1.0	790.2444	823.2092
	А	A	A	1.0 A	А	А
F_2S_2	242.2870	297.1974	363.7258	590.8282	635.2083	719.8575
TS	A 452 0122 ;	A 147 1120	A 288 5802	A 256 1802	A 662 2272	A 726 8014
15	432.0122 l A	A	200.3002 A	A	A	A
FSSF	180.0686	272.2436	297.4197	517.9876	614.0682	643.9727
		B3	LYP/6-311++G** ϵ	= 1.0		
EC	A	A	A 259 5100	A	A	A
F_2S_2	241.1224 A	293.5432 A	358.5190 A	575.6219 A	627.3023 A	/1/.//61 A
TS	438.0688 i	142.3575	289.7168	361.7948	657.7996	725.0464
FSSE	A 173 1405	A 270 9562	A 295 0883	A 570 8126	A 608.0150	A 641 1000
1 991	175.1405	210.7502	275.0005	570.0120	000.0133	0+1.1090

^{*a*} Values are given in cm⁻¹.

S is the inverse of hardness:

$$S = 1/(2\eta) \tag{8}$$

Recently, Parr et al.³⁰ have introduced an electrophilicity index ω defined as

$$\omega = \mu^2 / (2\eta) \tag{9}$$

According to the definition of ω , this index measures the propensity of a species to "soak up" electrons.³⁰

The solvent plays an important role in most of the reactions occurred in the solution phase, however very little work has been done to better understand the specific effect of the solvent in these reactions vis-à-vis the variations in different global and local reactivity descriptors. For this purpose, in the present work, we study two intramolecular rearrangement reactions: *trans*-N₂H₂ \rightarrow *cis*-N₂H₂ (reaction I) and F₂S₂ \rightarrow FSSF (reaction II) in a vacuum as well as in aqueous solution in terms of the profiles of μ , η , α , ω , condensed form of *f*(*r*), etc. Atomic and

TABLE 2: Global Molecular Properties at the Three Stationary Points along the IRC for the Intramolecular Conversion of N_2H_2 and F_2S_2

	energy	dipole moment	α_{Pople}	α_{Sadlej}	μ	η	ω	
	[au]	[D]	[au]	[au]	[kcal/mol]	[kcal/mol]	[kcal/mol]	$V_{\rm M}$
			Н	F/6-311G**	$\epsilon = 1.0$			
$t-N_2H_2$	-110.027 833	0.0000	13.413	17.606	-80.355 729	169.399 327	19.058 64	1.899 37
TS	-109.937 346	2.2149	13.301	19.402	-54.448 999	146.598 769	10.111 59	1.711 83
$c-N_2H_2$	-110.016 /64	3.1624	13.772	17.865	-83.066 570	169.305 201	20.377 56	1.853 73
			H	F/6-311G**	$\epsilon = 78.5$			
$t-N_2H_2$	-110.033 148	0.0000	16.080	21.468	-77.039 341	169.546 792	17.502 72	1.939 05
15	-109.945 451	2.5957	15.928	23.856	-51.286.351	146.975 275	8.948 07	1.720.60
C-IN ₂ H ₂	-110.026 944	3.0843	10.240	21.034	-/8.401 03/	109.084 844	18.112 17	1.952.04
		0.0000	HF	/6-311++G*	$\epsilon \epsilon = 1.0$		10 101 00	
$t-N_2H_2$	-110.032 331	0.0000	15.579	17.606	-110.58 9137	143.269 010	42.681 80	1.947 79
	$-109.943\ 607$ $-110\ 020\ 262$	2.21/6	15.033	19.402	-90.314305 -116277510	110.123 104	35.120.80	1.462 13
C-1N2112	110.020 202	5.2711	15.670	17.805	-110.277 510	139.013 /00	46.420 93	1.000 55
	110 027 579	0.0000	HF/	$6-311++G^{**}$	$* \epsilon = 78.5$	142 (7(999	29.710.60	2 011 29
$t-N_2H_2$	-110.03/5/8	0.0000	18.695	21.468	-105.468 659	143.0/0 888	38./10.60	2.011 28
15 a N.H.	-109.931070 -110020625	2.0230	19.230	23.830	-84.1800 / 3 -108 386 578	117.130 320	30.23272	1.175 49
C-1N2112	110.030 025	5.8505	10.004	21.034	-108.380 378	141.800 040	41.423 12	2.042 24
	110 (70 057	0.0000	B3L	_YP/6-311G*	$\epsilon^* \epsilon = 1.0$	50,400,170	76 000 50	1 72 4 0 4
$t-N_2H_2$	-110.672.857	0.0000	13.912	19.291	-94.308 403	58.490 160	76.030 52	1.724 94
	-110.591/30 -110.663/452	2.0810	14.118	22.180	-71.304/08 -07.001/007	58./0/ 55/ 58.001.170	03.943 30	1.033 /3
<i>C</i> -1 N ₂ 11 ₂	110.003 432	2.9319	14.390	19.093	97.091 407	38.901 179	80.021 07	1.025 21
		0.0000	B3L	YP/6-311G*	$* \epsilon = 78.5$			1 200 25
$t-N_2H_2$	-110.677 596	0.0000	16.614	23.515	-90.938 677	58.778 815	70.347 14	1.780 35
	-110.598 575	2.4426	16.890	27.431	-68.2510/1 -02.124670	39.053 054	59.639 49	1.665 00
<i>C</i> -1 N ₂ 11 ₂	110.072 232	5.4005	17.001	24.090	92.124 070	39.249 447	/1.020-54	1.740.80
	110 (70 ((0	0.0000	B3LY	(P/6-311++0	$G^{**} \epsilon = 1.0$	57 505 600	02 252 44	1 400 07
$t-N_2H_2$	-110.679.668	0.0000	16.341	19.291	-103.699.082	57.595 629	93.353 44	1.492 37
15 c-NaHa	-110.000384 -110669006	1.7210	17.388	19 893	-83.973321 -105154904	58.579.005 57.645.830	91.390 49	0.01790
C-1(2112	110.009 000	5.1075	10.007	17.075	105.15 4704	57.045 050	JJ.JUJ 40	1.100 20
	110 (04 22)	0.0000	B3LY	P/6-311++C	$3^{**} \epsilon = 78.5$	57.010.110	02 501 75	1 501 07
$I-N_2H_2$	-110.684 326 -110.612 775	0.0000	19.467	23.515	-98.311 913	57.812 119 28 886 541	83.391 /3	1.591 27
rs c-NaHa	-110.012773 -110.678.069	2.0030	19 763	27.431	-98 396 627	57 934 482	83 559 01	1 422 74
C-112112	110.078 009	5.0992	19.705	24.090	98.590 027	57.954 402	05.559 01	1.422 /4
FG	002 000 2/7	1.0405	H 20.002	IF/6-311G**	$\epsilon = 1.0$	140 200 101	12 057 12	0.5(1.71
F ₂ S ₂	-993.900 367	1.8405	30.803	42.422	-108.037024 -150007561	140.308 181	42.05/43	0.561 /1
FSSE	-993 914 570	2 1202	30.907	45.507	-105781788	160 909 807	34 770 37	0.380.00
1551	<i>))3.)</i> 1 4 <i>31</i> 0	2.1202	50.115		105.701 700	100.909 007	54.770 57	0.372 30
EC	002 005 216	2 2192	HI 27 707	F/6-311G** ($\epsilon = 78.5$	142 021 222	22 657 17	0 567 50
Г ₂ З ₂ ТS	-993.903 310	6 8000	57.767 45.457	59 501	-130 /07 683	142.951 255	33.037 17 85.630 86	0.307 39
ESSE	-993,919,933	2.5358	36.734	53.046	-95.559416	162.353 113	28.122.66	0.365 70
			LIE	6 211 1 1 0*	* - 10			
F ₂ S ₂	-993 910 840	1 6388	35 797	/0-311++0" 12 122	$-112\ 201363$	138 111 845	45 575 91	-0.440.77
TS	-993 814 923	5 6742	41 194	45 507	-156 193961	111 125 158	109 770 61	-0.378.26
FSSF	-993.928 948	1.9966	34.899	41.131	-115.194654	154.904 398	42.832.25	-0.36984
			UE/	6 211⊥⊥C*	* ~ - 78 5			
FaSa	-993 915 2/3	2 3038	45 131	5/ 913	-101605613	141 208 678	36 554 77	-0 358 /8
TS	-993.836.786	7.1499	51.985	59.501	-144.431.016	113.814 100	91.642.06	-0.18644
FSSF	-993.934 008	2.4447	43.490	53.046	-107.971848	153.316 761	38.019 07	$-0.435\ 13$
			B3I	VP/6 311C	** c = 1.0			
F ₂ S ₂	-996 112 862	1,7729	34,885	47,242	-130.992.581	59,040,633	145,315,65	0.572.64
TS	-996.043 840	3.9867	38.279	50.508	-146.012377	30.836 549	345.687 42	0.534 12
FSSF	-996.115 395	2.1556	34.752	46.651	-124.594 970	68.851 977	112.733 92	0.494 87
			B3I	VP/6-311G*	$* \epsilon = 78.5$			
F ₂ S ₂	-996,116,940	2.1414	44.275	62.364	-121.833.862	59,665,020	124,390,22	0.567.25
TS	-996.056 231	5.0684	49.523	67.696	-137.333715	32.279 855	292.141 17	0.539 90
FSSF	-996.120 416	2.6163	43.879	61.380	-115.878 656	69.172 015	97.061 38	0.482 45
			R3I V	′P/6-311++4	$G^{**} \epsilon = 1.0$			
F_2S_2	-996,127,309	1.9396	40.616	47.242	-135.134 242	58,350 356	156.479 45	-0.40224
TS	-996.065 235	4.4250	44.782	50.508	-154.694 177	31.147 174	384.148 64	-0.282 84
FSSF	-996.134 491	2.2138	40.549	46.651	-131.714 234	68.020 507	127.525 07	-0.103 29
			BILY	P/6-311++C	$i^{**} \epsilon = 78.5$			
F_2S_2	-996.131 333	2.5246	52.401	62.364	-125.771 578	59.235 166	133.522 80	-0.374 26
TS	-996.078 879	5.7936	58.456	67.696	-145.579 386	33.403 124	317.236 16	-0.14233
FSSF	-996.139 445	2.7359	52.014	61.380	-122.382 946	68.409 572	109.469 95	$-0.042\ 21$

Figure 1. Optimized geometries for the reactants, TS, and products involved in (a) reaction I, $HF/6-311G^{**}$ calculations, values in brackets are from DFT calculations and (b) reaction II, $HF/6-311++G^{**}$ calculations, values in brackets are from DFT calculations. Bond lengths are given in angstroms and angles in degrees.

molecular valencies are calculated in the stationary points. The effect of inclusion of diffuse functions has also been studied. Both Hartree–Fock (HF) and DFT calculations have been performed. The theoretical background of the present work is given in section 2, whereas section 3 deals with the details of computation. Section 4 presents the results and discussion, and section 5 contains some concluding remarks.

2. Theoretical Background

A finite difference approximation to μ (eq 1) and η (eq 2) leads to³¹

$$\mu = -\left(\frac{I+A}{2}\right) \tag{10}$$

and

$$\eta = \left(\frac{I-A}{2}\right) \tag{11}$$

where I is the first ionization potential and A is the electron affinity. Further use of Koopmans' theorem gives³¹

$$\mu = \frac{\epsilon_{\text{HOMO}} + \epsilon_{\text{LUMO}}}{2} \tag{12}$$

and

Figure 2. (a) Profiles of energy, chemical potential, hardness, and polarizability in vacuum and solvent for reaction I.

$$\eta = \frac{\epsilon_{\text{LUMO}} - \epsilon_{\text{HOMO}}}{2} \tag{13}$$

where $\epsilon_{\text{HOMO(LUMO)}}$ is the energy of the highest occupied (lowest unoccupied) molecular orbital.

Condensed Fukui functions in atom A in a molecule are calculated as

$$f_{\rm A}^{\rm +}(r) = [q_{N+1}^{\rm A}(r) - q_{N}^{\rm A}(r)]$$
(14)

and

$$f_{\rm A}^{-}(r) = [q_{\rm N}^{\rm A}(r) - q_{\rm N-1}^{\rm A}(r)]$$
(15)

where q_M^A is the Mulliken population at the atomic site A in a

molecule containing *M* electrons. The geometries of (N + 1)and (N - 1)-electron systems are taken to be the same as that of the *N*-electron system.³

Atomic valencies V_A are calculated by adding all of the offdiagonal elements (for a given atomic site) of the bond order matrix (Mulliken population), and the molecular valency is obtained as²⁶

$$V_{\rm M} = \frac{1}{2} \sum_{\rm A} V_{\rm A} \tag{16}$$

For the two reactions studied here, the reactants and products are chosen in such a way that a reactant goes to the respective product via the corresponding TS when the value of the

Figure 2. (b) Profiles of energy, chemical potential, hardness, and polarizability in vacuum and solvent for reaction II. See the text for details.

associated reaction coordinate increases. For this definition, reaction I is endothermic and reaction II is exothermic.

3. Computational Details

Geometry optimization and frequency calculation for various species associated with the intramolecular rearrangement reaction I have been performed at the HF/6-311G** and DFT/6-311G** levels of theory, whereas for reaction II, it has been performed at the HF/6-311++G** as well as DFT/6-311++G** levels. To see the effect of including the diffuse functions the reactant, the TS and the product for the former reaction have been studied also with 6-311++G** basis set and for the latter with 6-311G** basis set as well. The exchange-correlation functionals in all DFT calculations have been taken to be B3LYP.^{32,33}

Various profiles are generated along the internal reaction coordinate (IRC), which is just the N1–N2–H4 angle for the first reaction that goes from $\theta = 107.74^{\circ}$ at the trans conformation to $\theta = 247.74^{\circ}$ at the cis one passing through the TS at θ = 177.74°, as is shown in Figure 1a. In the F₂S₂ \rightarrow FSSF reaction, a fluorine atom migrates from one sulfur to another following a more complex IRC with a F3–S1–S2 angle $\theta =$ 69.18° at the TS structure (see Figure 1b). The μ and η values are calculated using eqs 12 and 13, respectively, and f_A^{\pm} and V_M are obtained by using respectively eqs 14–16. The polarizability is calculated using both Pople's as well as Sadlej's³⁴ basis set. All of the calculations have been accomplished using the Gaussian 94 package.³⁵

The solvent is taken to be water ($\epsilon = 78.5$) and has been modeled as SCI-PCM.³⁶ The self-consistent reaction field

Figure 3. (a) Profile of the electrophilicity index and dipole moment in vacuum and solvent for reaction I.

(SCRF) models of solvation represent the solvent as a continuum of uniform dielectric constant ϵ , and the solute is placed into a cavity within the solvent. In the SCI-PCM model, the cavity, defined as an isosurface, and the electron density are necessarily coupled in the SCF procedure.³⁶

4. Results and Discussion

Optimized structures of the reactant (R), the TS, and the product (P) of the reactions I and II along with the geometrical parameters are depicted in Figure 1a,b, respectively. The quantities within the brackets are from the DFT calculations. Table 1 presents all six vibrational frequencies of R, TS, and P for both of the reactions. All of the frequencies for R and P confirm that they correspond to minimum energy equilibrium

structures, whereas one imaginary frequency each for the TSs of both reactions confirm that they are true TSs.

Energy (au), chemical potential (kcal/mol), hardness (kcal/mol), dipole moment (D), polarizability (au, with Pople and Sadlej basis sets), electrophilicity index (kcal/mol), and molecular valency values for R, TS, and P for both of the reactions in gas and solution phases calculated at HF(B3LYP)/6-311G** and HF(B3LYP)/6-311++G** levels are presented in Table 2. In reaction I, R is more stable than P, whereas P is more stable than R in reaction II. The TSs have been found to be softer and more polarizable in all cases, indicating the validity of MHP and MPP. The α values for reaction I obtained with Pople's basis set do not always show the proper behavior. However, for reaction II, both Pople's and Sadlej's bases provide

Figure 3. (b) Profiles of the electrophilicity index and dipole moment in vacuum and solvent for reaction II. See the text for details.

identical trends. In reaction I, the dipole moment of the TS is between those of R and P, whereas in reaction II, the TS is more polar than those of both R and P. Water being a polar solvent will have more dramatic effects on all quantities for the species with larger dipole moment. Because R is more stable than P in reaction I, one would expect $\eta_R > \eta_P$ and $\alpha_R < \alpha_P$. Although $\alpha_R < \alpha_P$ is always found to be valid, the $\eta_R > \eta_P$ condition is found to be valid only for HF/6-311G** calculations without solvent. The condition $\eta_R > \eta_P$ is satisfied in both the presence and absence of the solvent when diffuse functions are included at the HF level of calculation. There is no change in the trend for the DFT calculation even when diffuse functions are added.

For reaction II, which is of Hammond type,¹ P is more stable than R, and as expected from MHP and MPP, $\eta_P > \eta_R$ and $\alpha_P < \alpha_R$ in all of the cases. Molecular valency is minimum for the

TS and maximum for the most stable species in most cases of reaction I, but it becomes negative for reaction II when calculated using diffuse functions and shows uncharacteristic trends otherwise. Even though in both reactions the TS is softer than those of both R and P, for reaction I, the TS is less electronegative and less electrophilic than those of both R and P, whereas for reaction II, the TS is more electronegative and more electrophilic than those of both R and P. This result justifies the definition of the electrophilicity index given by Parr et al.³⁰ because a more electronegative system is supposed to be more electrophilic as well.

Profiles of Global Reactivity Indices along a Reaction Path. In Figure 2, we present the profiles of ΔE , $\Delta \mu$, $\Delta \eta$, and $\Delta \alpha$ along the IRC. The quantities are calculated relative to the corresponding reactant value, viz., for a property Q, ΔQ (IRC) = Q(IRC) - Q(reactant). All of these quantities attain their

TABLE 3.	Reaction and Activation	Global Properties for	the Intramolecular	Conversion of N	J.H. and F.S.ª
INDEL 5.	iteaction and richvation	Global I Toper des Tor	the meranorecular	Conversion of 1	12112 and 1 202

	HF/6-311G**		HF/6-31	1++G**	B3LYP/6	B3LYP/6-311G** B3LYP/6-311		
	$\epsilon = 1.0$	$\epsilon = 78.5$	$\epsilon = 1.0$	$\epsilon = 78.5$	$\epsilon = 1.0$	$\epsilon = 78.5$	$\epsilon = 1.0$	$\epsilon = 78.5$
				$t-N_2H_2 \rightarrow c-N_2H$	2			
ΔE°	6.9459	3.8928	7.5737	4.3630	5.9013	3.3533	6.6901	3.9268
ΔE^{\neq}	56.7807	55.0303	55.6752	53.9077	50.9075	49.5858	45.9859	44.8992
$\Delta \mu^{\circ}$	-2.7108	-1.3617	-5.6884	-2.9179	-2.7830	-1.1860	-1.4558	-0.0847
$\Delta \mu^{\ddagger}$	25.9067	25.7530	20.2748	21.2820	22.8037	22.6876	19.7258	20.5572
$\Delta \eta^{\circ}$	-0.0941	0.1381	-3.6552	-1.8762	0.4110	0.4706	0.0502	0.1224
$\Delta \eta^{\dagger}$	-22.8006	-22.5715	-27.1459	-26.5404	-19.7226	-19.7258	-19.0166	-18.9256
$\Delta \alpha^{\circ}_{Pople}$	0.3592	0.1663	0.2901	0.1096	0.6781	0.4674	0.5285	0.2952
$\Delta \alpha^{*}_{\text{Pople}}$	-0.1121	-0.1514	0.4531	0.5410	0.2065	0.2766	1.0467	1.2354
$\Delta \alpha^{\circ}_{\text{Sadlej}}$	0.2582	0.1854	0.2582	0.1854	0.6013	0.5745	0.6013	0.5745
$\Delta \alpha^{*}_{\text{Sadlej}}$	1.7961	2.3879	1.7961	2.3879	2.8881	3.9162	2.8881	3.9162
				$F_2S_2 \rightarrow FSSF$				
ΔE°	-8.9127	-9.1725	-11.3632	-11.7755	-1.5895	-2.1813	-4.5069	-5.0905
ΔE^{\neq}	64.4204	54.0035	60.1903	49.2337	43.3130	38.0964	38.9529	32.9162
$\Delta \mu^{\circ}$	2.8552	2.5289	-2.9933	-6.3662	6.3976	5.9552	3.4200	3.3886
$\Delta \mu^{\ddagger}$	-41.4605	-41.3193	-43.9926	-42.8254	-15.0198	-15.4999	-19.5599	-19.8078
$\Delta \eta^{\circ}$	20.6016	19.4219	16.7926	12.1081	9.8113	9.5070	9.6702	9.1744
$\Delta \eta^{\dagger}$	-28.3265	-29.4529	-26.9867	-27.3946	-28.2041	-27.3852	-27.2032	-25.8320
$\Delta \alpha^{\circ}_{Pople}$	-0.6901	-1.0533	-0.8982	-1.6411	-0.1333	-0.3961	-0.0674	-0.3871
$\Delta \alpha^{*}_{\text{Pople}}$	6.1643	7.6705	5.3973	6.8540	3.3942	5.2484	4.1661	6.0550
$\Delta \alpha^{\circ}_{\text{Sadlej}}$	-1.2913	-1.8671	-1.2913	-1.8671	-0.5912	-0.9841	-0.5912	-0.9841
$\Delta \alpha^{\sharp}_{Sadlej}$	3.0852	4.5880	3.0852	4.5880	3.2664	5.3321	3.2664	5.3321

^a Variations in energy, chemical potential, and hardness are given in kcal/mol. Variations in polarizability are given in au.

TABLE 4: Condensed To Atom Fukui	Functions and Atomic '	Valency at the Stationary	Points along the IRC for the
Intramolecular Conversion of N ₂ H ₂ and	$\mathbf{F}_2\mathbf{S}_2$		-

	$f^+_{\rm N1}$	f^+ r	f^+ H3	$f^+_{ m H4}$	$f_{\rm N1}$	f_{N2}	с f-н	$f_{\rm H}$	14 V _{N1}	V_{N2}	$V_{\rm H3}$	$V_{\rm H4}$
					Н	F/6-311G ³	$** \epsilon = 1.0$					
$t-N_2H_2$	0.356 2	0.356	5 23 0.143	77 0.143 77	0.324 7	3 0.324	73 0.175	27 0.175	5 27 1.343 3	4 1.343 34	4 0.556 03	0.556 03
TS	0.344 (0 0.376	585 0.161	55 0.117 59	0.230 5	5 0.519	14 0.163	09 0.087	22 1.153 1	0 1.079 55	5 0.432 63	0.758 38
$c-N_2H$	2 0.355 1	14 0.355	5 38 0.144	72 0.144 76	0.309 2	5 0.300	76 0.196	03 0.193	96 1.366 0	8 1.367 8	5 0.487 19	0.486 34
HF/6-311G** $\epsilon = 78.5$												
$t-N_2H_2$	0.363	0.363	3 18 0.136	82 0.13682	0.292 0	9 0.292	09 0.207	91 0.207	91 1.354 7	5 1.354 75	5 0.584 30	0.584 30
TS	0.354 8	36 0.374	488 0.147	26 0.123 00	0.1787	0 0.493	79 0.182	77 0.144	74 1.18902	2 1.048 32	2 0.472 26	0.731 59
$c-N_2H$	2 0.359 1	0.359	09 09 0.140	82 0.140 94	0.266 6	6 0.256	08 0.241	48 0.235	578 1.368 8	7 1.370 90	6 0.562 53	0.561 72
					B3I	LYP/6-311	$G^{**} \epsilon = 1.0$)				
$t-N_2H_2$	0.348 6	64 0.348	3 64 0.151	36 0.151 36	0.333 8	0 0.333	80 0.166	20 0.166	520 1.228 6	1 1.228 6	0.496 33	0.496 33
TS	0.321 8	0.340	0.194	00 0.143 97	0.285 2	1 0.416	70 0.186	39 0.111	70 1.112 1	5 1.129 73	3 0.296 70	0.728 87
$c-N_2H$	2 0.3417	0.34	0.158	35 0.158 22	0.313 0	5 0.314	51 0.186	14 0.186	531 1.2507	0 1.248 90	0.375 05	0.375 75
					B3L	YP/6-3110	$G^{**} \epsilon = 78.$	5				
$t-N_2H_2$	0.359 8	0.359	9 82 0.140	18 0.140 18	0.303 8	1 0.303	81 0.196	19 0.196	519 1.2514	8 1.251 48	8 0.528 87	0.528 87
TS	0.340 2	0.357	7 21 0.164	00 0.138 55	0.234 1	2 0.383	66 0.216	77 0.165	5 45 1.157 0	1 1.116 90	5 0.33966	0.716 37
$c-N_2H$	0.352	0.35	0.148	03 0.147 89	0.271 8	4 0.274	05 0.226	23 0.227	89 1.275 7	4 1.273 6	0.465 74	0.466 44
	f^+ sı	f^+ _{S2}	$f^+_{ m F3}$	$f^+_{ m F4}$	f^{-} sı	f_{s_2}	$f^{\rm F3}$	$f_{\rm F4}$	V _{S1}	V _{S2}	V _{F3}	V _{F4}
					HF	6-311++	$G^{**} \epsilon = 1.0$)				
F_2S_2	0.566 89	0.408 70	0.012 13	0.012 23	0.223 23	0.653 82	0.061 45	0.061 50	-0.354 61	0.288 39	-0.407 36	-0.407 96
TS	0.564 21	0.969 31	$-0.608\ 12$	0.074 61	0.126 99	0.213 05	0.608 43	0.051 53	-0.10212	0.20653	-0.40641	-0.45452
FSSF	0.594 39	0.594 11	-0.094 21	-0.09429	0.220 47	0.602 51	0.094 99	0.082 03	-0.001~70	0.063 19	-0.40057	-0.40059
					HF/	6-311++0	$G^{**} \epsilon = 78.$	5				
F_2S_2	0.591 50	0.369 49	0.019 46	0.019 55	0.190 12	0.712 47	0.048 59	0.048 82	$-0.300\ 18$	0.246 15	-0.331 22	-0.331 70
TS	0.382 37	0.996 38	-0.451 39	0.072 65	0.118 02	0.162 91	0.685 64	0.033 43	0.091 72	0.343 83	-0.38885	-0.41874
FSSF	0.573 73	0.573 29	-0.07347	-0.073 56	0.128 51	0.714 60	0.089 32	0.067 58	-0.02064	-0.020 61	-0.41449	-0.414 52
					B3LY	P/6-311+	$+G^{**}\epsilon =$	1.0				
F_2S_2	0.517 98	0.404 67	0.038 41	0.038 95	0.247 50	0.544 57	0.103 13	0.104 44	-0.27009	0.308 00	-0.421 13	-0.421 27
TS	0.317 67	0.461 17	0.137 40	0.083 76	0.226 41	0.312 31	0.354 08	0.099 60	0.015 27	0.227 36	-0.40350	$-0.404\ 81$
FSSF	0.516 41	0.471 51	0.013 20	0.003 42	0.353 86	0.354 35	0.146 03	0.145 76	0.253 27	0.253 17	-0.35656	-0.356 45
					B3LY	P/6-311+-	$+G^{**}\epsilon = 7$	8.5				
F_2S_2	0.492 58	0.414 62	0.046 36	0.046 43	0.240 76	0.608 84	0.074 91	0.075 50	-0.274 36	0.310 87	-0.392 18	-0.392 86
TS	0.327 20	0.470 43	0.123 08	0.079 28	0.258 66	0.309 94	0.359 21	0.072 19	0.136 64	0.327 94	-0.37607	-0.373 17
FSSF	0.486 60	0.486 74	0.013 50	0.013 16	0.325 09	0.418 30	0.135 64	0.120 97	0.275 00	0.346 31	-0.35277	-0.352 97

extremal potential (maximum or minimum) values around the IRC of the TS except for the $\Delta \alpha$ profile of reaction I, which is slightly asymmetric and shifted toward the right. Because the $\Delta \alpha_{Pople}$ profile does not reproduce the expected trend in reaction

I, in Figure 2, we present only the $\Delta \alpha_{\text{Sadlej}}$ profiles. It is heartening to note that the $\Delta \alpha$ profile generally mimicks the ΔE profile, whereas the $\Delta \eta$ profile mirrors them as a clear signature of MHP and MPP in the context of intramolecular

Figure 4. (a) Profiles of the nucleophilic Fukui function at site $k_i f_k^-$ in vacuum and solvent for reaction I.

rearrangement reactions. The profile of $\Delta\mu$ is a mirror image of the $\Delta\eta$ profile for reaction I, and it is like the $\Delta\eta$ profile for reaction II. The most discernible change in the presence of a solvent is shown by the $\Delta\alpha$ profile in all cases. It may be noted that all quantities do not exhibit clear-cut extrema in all of the cases of reactants and products, which may be due to the approximations (cf. eqs 12 and 13) involved in their calculation. Total energy is, however, minimum for both the reactants and products and maximum for the TS which is confirmed by respective frequency calculations.

The profiles of the electrophilicity index are depicted in Figure 3 along with those of the dipole moment. In all cases, the electrophilicity goes down in the presence of the solvent. To check whether this is a generic result, more systems should be studied in the presence of various solvents. Even it is difficult

to say at this stage whether μ is affected more than η in the presence of a solvent because the $\Delta \mu$ profile lies below the $\Delta \eta$ profile in the HF calculation but not in the DFT calculation. Although the dipole moment increases monotonically for reaction I and passes through a maximum at the TS for reaction II, ω pass through extrema in the TS in all cases. The chemical potential profile is a better indicator than the dipole moment profile in analyzing the electrophilicity patterns. Extremization of this index can be understood in the same terms for μ and η , it is easy to show from eq 9 that when both μ and η are extrema ω also attains an extremum value at that point.

Table 3 presents the ΔQ° and ΔQ^{\neq} values where the property Q is E, μ , η , and α (Pople and Sadlej) and $\Delta Q^{\circ} = Q(P) - Q(R)$ and $\Delta Q^{\neq} = Q(TS) - Q(R)$. Reaction I is not favorable both thermodynamically (endothermic) and kinetically. Addition

Figure 4. (b) Profiles of the nucleophilic Fukui function at site $k_i f_k^-$ in vacuum and solvent for reaction II. See the text for details.

of solvent improves the situation in both accounts, in the sense that the reverse reaction becomes less favorable. Reaction II is, however, thermodynamically favorable (exothermic). Presence of the solvent makes the reaction more favorable both thermodynamically and kinetically.

Profiles of Local Reactivity Indices along a Reaction Path. Different local quantities like atomic valencies V_A and electrophilic and nucleophilic Fukui functions (f_A^{\pm}) are given in Table 4. Electrophilicity (ω) is a global reactivity parameter, its extremization around the TS results from the corresponding extremization of f_k^{\pm} at the site k. For reaction I, ω minimizes around the TS mainly because of that of f_{N1}^{+} and f_{H4}^{+} . Around the TS, ω is maximum for reaction II mainly because of the change in f_{F3}^{+} along the IRC. V_A values do not provide and conclusive information. To understand the situation better, the profiles of different f_A^- quantities are presented in Figure 4. These profiles show the variation of the selectivity pattern during the progress of the reaction. It is interesting to note that the TS geometry can be approximately identified from the intersection point of f_{N1} and f_{H3} (only in the presence of solvent) for reaction I and from the first intersection point of f_{S1} and f_{S2} (better in the presence of solvent) for reaction II. HF and DFT calculations reveal identical trends in almost all cases, although the numerical values differ.

5. Concluding Remarks

Ab initio SCF and DFT calculations have been performed in order to gain insights into the effect of a solvent in the intramolecular rearrangement reactions like reactions I and II. Energy and polarizability profiles pass through maxima, and hardness profile passes through a minimum at the TS, indicating the validity of the principles of maximum hardness and minimum polarizability. In the solution phase, the reactions are both thermodynamically and kinetically more favorable. Electrophilic condensed Fukui functions can identify the particular atomic site responsible for extremization of the global electrophilicity index around the TS. Electronegativity profiles follow identical trends as those of the profiles of the electrophilicity index. Appreciable changes in various properties in the presence of the solvent are discernible for the species with large dipole moments. All species associated with these reactions become less electrophilic in aqueous solution.

Acknowledgment. This work has been supported by FON-DECYT through Project Nos. 3990033, 1990543, and 7990008 and by Cátedra Presidencial en Ciencias (A.T.L.). P.K.C. thanks the Third World Academy of Sciences, for financial assistance. We thank Mr. B. Maiti for his help in the preparation of the manuscript.

References and Notes

(1) Solá, M.; Toro-Labbé, A. J. Phys. Chem. A **1999**, 103, 8847.

(2) Pauling, L. *The Nature of Chemical Bond*; Cornell University Press: Ithaca, NY, 1960.

(3) *Electronegativity: Structure and Bonding*; Sen, K. D., Jorgensen, C. K., Eds.; Springer-Verlag: Berlin, Germany, 1987; Vol. 66.

(4) Pearson, R. G. *Hard and Soft Acids and Bases*; Dowden, Hutchinson and Ross: Stroudsberg, PA, 1973. Pearson, R. G. *Coord. Chem. Rev.* **1990**, *100*, 403.

(5) Chemical Hardness: Structure and Bonding; Sen, K. D., Mingos, D. M. P., Eds.; Springer-Verlag: Berlin, Germany, 1993; Vol. 80.

(6) Pearson, R. G. *Chemical Hardness: Applications from Molecules to Solids*; Wiley-VCH Verlag GMBH: Weinheim, Germany, 1997.

(7) Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533.

(8) McQuarrie, D. A.; Simon, J. D. *Physical Chemistry. A Molecular Approach*; University Science Books: Sausalito, CA, 1997.

(9) Maitland, G. C.; Rigby, M.; Smith, E. B.; Waheham, W. A. *Intermolecular Forces. Their Origin and Determination*, Oxford Science Publications: Clarendon Press: Oxford, U.K., 1987.

(10) Chattaraj, P. K.; Nath, S.; Sannigrahi, A. B. Chem. Phys. Lett. 1993, 212, 223.

(11) Chattaraj, P. K.; Nath, S.; Sannigrahi, A. B. J. Phys. Chem. 1994, 98, 9143.

(12) Parr, R. G. J. Am. Chem. Soc. **1984**, 106, 4049. Fukui, K. Science **1987**, 218, 747.

(13) Yang, W.; Parr, R. G. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 6723.
(14) Nalewajski, R. F. Int. J. Quantum Chem. 1991, 40, 265.

(15) Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708.

(16) Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 1978, 68, 3801.

(17) Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. **1983**, 105, 7512. (18) Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989.

(19) Sanderson, R. T. *Chemical Bonds and Bond Energy*, 2nd ed.; Academic Press: New York, 1976. Sanderson, R. T. *Science* **1955**, *121*, 207.

(20) Chattaraj, P. K.; Lee, H.; Parr, R. G. J. Am. Chem. Soc. **1991**, 113, 1855. Chattaraj, P. K.; Schleyer, P.v. R. J. Am. Chem. Soc. **1994**, 116, 1067. Cedillo, A.; Chattaraj, P. K.; Parr, R. G. Int. J. Quantum Chem. **2000**, 77, 403.

(21) Pearson, R. G. J. Chem. Educ. 1987, 64, 561. Pearson, R. G. Acc. Chem. Res. 1993, 26, 250.

(22) Parr, R. G.; Chattaraj, P. K. J. Am. Chem. Soc. 1991, 113, 1854.
Chattaraj, P. K.; Liu, G. H. Chem. Phys. Lett. 1995, 237, 171. Chattaraj, P. K. Proc. Indian Natl. Sci. Acad. Part A 1996, 62, 513. Ayers, P. W.; Parr, R. G. J. Am. Chem. Soc. 2000, 122, 2010.

(23) Pearson, R. G. in ref 6. Politzer, P. J. Chem. Phys. 1987, 86, 1072.
Fuentealba, P.; Reyes, O. THEOCHEM 1993, 282, 65. Ghanty, T. K.;
Ghosh, S. K. J. Phys. Chem. 1993, 97, 4951.

(24) Chattaraj, P. K.; Sengupta, S. J. Phys. Chem. 1996, 100, 16126. Ghanty, T. K.; Ghosh, S. K. J. Phys. Chem. 1996, 100, 12295.

(25) Chattaraj, P. K.; Poddar, A. J. Phys. Chem. A 1998, 102, 9944;
1999, 103, 1274; 1999, 103, 8691. Chattaraj, P. K.; Fuentealba, P.; Jaque,
P.; Toro-Labbé, A. J. Phys. Chem. A 1999, 103, 9307. Jaque, P.; Toro-

Labbé, A. J. Phys. Chem. A 2000, 104, 995. Chattaraj, P. K.; Fuentealba,

P.; Gómez, B.; Contreras, R. J. Am. Chem. Soc. 2000, 122, 348.
(26) Ghanty, T. K.; Ghosh, S. K. J. Phys. Chem. A 2000, 104, 2979.
Kar, T.; Scheiner, S. J. Phys. Chem. 1995, 99, 8121.

(27) Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. M. Phys. Rev. Lett. **1982**, 49, 1691.

(28) Yang, W.; Lee, C.; Ghosh, S. K. J. Phys. Chem. 1985, 89, 5413.
(29) Berkowitz, M.; Parr, R. G. J. Chem. Phys. 1988, 88, 2554.

(30) Parr, R. G.; von Szentpály, L.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922.

(31) Pearson, R. G. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 8440.

(32) Becke, A. D. J. Chem. Phys. 1992, 97, 9173.

(33) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

(34) Sadlej, A. J.; Urban, M. THEOCHEM 1991, 234, 147.

(35) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;

Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. *Gaussian 94*; Gaussian, Inc.: Pittsburgh, PA, 1995.

(36) Foresman, J. B.; Keith, T. A.; Wiberg, K. B.; Snoonian, J.; Frisch, M. J. J. Phys. Chem. **1996**, 100, 16098.